Diabetes and peritoneal dialysis

S. Van Laecke

UZ Gent
DIABETES
ARE YOU AT RISK?

Hillary Carroll, 11, has "adult-onset" diabetes

- WHO'S GETTING IT
- WHY IT'S STRIKING SO MANY
- WHAT YOU CAN DO TO FIGHT IT
Diabetes mellitus: facts

• By the year 2030 366 million people (4.4% vs. 2.8% now)

• Caused by genetic, environmental factors, chronic subclinical inflammation and especially insulin resistance

• Enhanced cardiovascular morbidity and mortality: especially in females

• About one third of the new patients receiving dialysis treatment
Worldwide prevalence of diabetes in 2000 (according to age and sex)

Expectancy of diabetes in 2030

In adults aged >20y

Mortality due to diabetes*

*Adults in 2000 from 35 to 64y

Costs of type 2 diabetes in Europe

The total direct and estimated costs for diabetes in 7 European countries* were estimated in 1999 on €28 billion (2.834 € per patient)

* Belgium, France, Germany, Italy, the Netherlands, Sweden, the UK

Jönsson B. Diabetologia. 2002;45:S5-S12
Diabetes as the primary diagnosis of incident renal replacement treatment patients in 2000

Diabetes mellitus and Peritoneal Dialysis: potential advantages

- no need for vascular access
- no need for systemic anticoagulation
- continuous therapy
- gradual ultrafiltration
- better preservation of renal function
- fewer episodes of hypotension
- better control of anemia
- lifestyle advantages
- more liberal diet
Diabetes mellitus and PD: outcome?

Diabetes mellitus and PD: outcome

HD better:
USRDS report 2000
Bloembergen et al. JASON 1995:RR 1.38
Held et al. KI 1994:RR 1.34 (>63j)

PD better:
Fenton et al. AJKD 1997:RR 0.73 (0-64j) after adjustment for age, comorbidity
Collins et al. AJKD 1999:RR 1.21 in diabetic women >55j vs. 1.03 in older diabetic men, 0.88 and 0.86 in women and men of <55j resp.
Vonesh et al. JASON 1999 lower risk in PD group except female diabetics
Liem et al. KI 2007 except for older diabetics

More **technique failure in diabetics** versus non-diabetics (JASON 2000, Van Biesen et al) with RR 1.81 (p<0.001) and versus HD (RR 1.39 with p<0.02)
Survival in HD versus PD

Comparison of hemodialysis and peritoneal dialysis survival in The Netherlands

YS Liem, J.B. Wong, MGM Havelaar, Th de Charro and WC Winkelmoayer

<table>
<thead>
<tr>
<th>Age</th>
<th>DM</th>
<th>>3–6 months</th>
<th>>6–15 months</th>
<th>>15 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>No</td>
<td>0.26 (0.17; 0.41)</td>
<td>0.51 (0.39; 0.68)</td>
<td>0.86 (0.74; 1.00)</td>
</tr>
<tr>
<td>40</td>
<td>Yes</td>
<td>0.40 (0.23; 0.68)</td>
<td>0.59 (0.44; 0.81)</td>
<td>1.06 (0.88; 1.26)</td>
</tr>
<tr>
<td>50</td>
<td>No</td>
<td>0.35 (0.25; 0.48)</td>
<td>0.62 (0.51; 0.76)</td>
<td>0.95 (0.85; 1.05)</td>
</tr>
<tr>
<td>50</td>
<td>Yes</td>
<td>0.53 (0.34; 0.83)</td>
<td>0.72 (0.56; 0.93)</td>
<td>1.17 (1.00; 1.35)</td>
</tr>
<tr>
<td>60</td>
<td>No</td>
<td>0.46 (0.37; 0.58)</td>
<td>0.75 (0.65; 0.87)</td>
<td>1.05 (0.97; 1.13)</td>
</tr>
<tr>
<td>60</td>
<td>Yes</td>
<td>0.71 (0.48; 1.04)</td>
<td>0.87 (0.71; 1.09)</td>
<td>1.29 (1.12; 1.48)</td>
</tr>
<tr>
<td>70</td>
<td>No</td>
<td>0.62 (0.50; 0.76)</td>
<td>0.92 (0.80; 1.05)</td>
<td>1.16 (1.07; 1.25)</td>
</tr>
<tr>
<td>70</td>
<td>Yes</td>
<td>0.95 (0.64; 1.39)</td>
<td>1.07 (0.85; 1.33)</td>
<td>1.42 (1.23; 1.65)</td>
</tr>
</tbody>
</table>
Survival Diabetic patients Stoke/Gent/ Brescia

N=188

p=0.02
Conclusion (part 1)

• Caveat bias in US(RDS)-based studies
• PD as a first treatment modality might be of benefit for diabetic ESRD patients
• Special caution should be given to older female patients
PD in diabetics: concerns

- Obesity
- Differences in peritoneal membrane structure?
- Impact of glucose loading?
- Higher peritonitis rates?
- Insulin IP or SC?
Diabetes mellitus and PD: determinants of survival: the role of obesity

Reverse epidemiology

Leavey SF et al. NDT 2001:16:2386-94
Trends in obesity in the ESRD population

Kramer, JASON 2006;17:1453-59
Diabetes mellitus and PD: determinants of survival: the role of obesity

Adjusted mortality rates after censoring: associated RR by BMI

Rate per 1000 patient-years

years from day 90 of PD therapy

underweight normal overweight obese

Snyder JJ et al. KI 2003;64:1838-44
Adjusted survival rates for new ESRD patients treated with PD versus HD
Diabetes mellitus and PD: determinants of survival: the role of obesity

McDonald SP. JASON 2003;23:79-83
Diabetes and peritoneal membrane characteristics

Mind!
Protein losses
Fluid overload
Glucose absorption
Diabetes and peritoneal membrane characteristics

- L
- LA
- HA
- H

Survival (%)

Years

p = 0.02 H vs L
p = 0.05 HA vs L

Correa-Rotter, PDI 2001;33:875-79
Diabetes mellitus and PD: determinants of survival: the role of inflammation?

High salt intake

Bioincompatible, high glucose containing dialysis solutions

Osmotic stress | Oxidative stress | AGE | GDP | TGF-beta

Alterations in cell function, chronic inflammation

Peritonitis

Impaired host defence

Angiogenesis

Fibrosis

Loss of ultrafiltration and solute removal

Changing peritoneal membrane: after several months on PD: thickening of basal membrane in 26% of diabetics versus 5.6% of non-diabetics
Diabetes mellitus and PD: determinants of survival: the role of inflammation

<table>
<thead>
<tr>
<th>Glucose Degradation Products (GDPs) Identified in Peritoneal Dialysis Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
</tr>
<tr>
<td>Acetaldehyde</td>
</tr>
<tr>
<td>Formaldehyde</td>
</tr>
<tr>
<td>2-Furaldehyde</td>
</tr>
<tr>
<td>Glyoxal</td>
</tr>
<tr>
<td>5-Hydroxymethylfuraldehyde</td>
</tr>
<tr>
<td>Methylglyoxal</td>
</tr>
<tr>
<td>Valeraldehyde</td>
</tr>
<tr>
<td>3-Deoxyglucosone</td>
</tr>
<tr>
<td>3,4-Dideoxyglucosone-3-ene</td>
</tr>
</tbody>
</table>
PDC - Surface area
diabetics vs non diabetics

Nakamoto et al, AJKD, 2002
PDC- parameters
diabetics vs non-diabetics

Diabetic patients probably

• have a larger vascular surface area, potentially related to neo-angiogenesis

• have a more leaky membrane, probably due to interstitial damage

*multiplied by 10

Nakamoto et al, AJKD, 2002
Impact of dietary instructions on salt intake

N=37

Gunal et al, AJKD, 37, 2001, 588-593
Icodextrin and fluid status

P = 0.012
N = 32
Time = 4 months

Konings et al; KI, 2003
Icodextrin and peritoneal inflammation

Martikainen et al, PDI 2005, 5

Impact of education on diabetic compliance

- Intensive counselling of diabetic patients on PD
 - Importance of salt restriction
 - Importance of glucose monitoring
 - Deleterious effect of high glucose solutions

Quan and Wang T. et al, PDI 2006
Impact of education on diabetic compliance

- After 1 year:
 - Compliance to salt restriction increased from 19.5 to 76.2%
 - Only 3/31 used 2.5% and 1/31 used 4.25%
 - Fluid status improved as measured by bio-impedance measurement

Quan and Wang T. et al, PDI 2006
Diabetes and peritonitis risk

<table>
<thead>
<tr>
<th>Reference</th>
<th>Population</th>
<th>Infection free time (mths)</th>
<th>RR diabetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oo et al, AJKD 2004</td>
<td>USRDS</td>
<td>17.7 vs 15.8</td>
<td>1.13</td>
</tr>
<tr>
<td>Chow et al, PDI 2005</td>
<td>Hong Kong</td>
<td>82.3 vs 49.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Lim et al, Nephrology 2005</td>
<td>ANZDATA</td>
<td>Not given</td>
<td>NS</td>
</tr>
<tr>
<td>Wang Q et al, AJKD 2003</td>
<td>Pennsylvania</td>
<td>Not given (rate 0.65/year)</td>
<td>NS</td>
</tr>
</tbody>
</table>
Diabetes mellitus and PD peritonitis

Chow KM, PDI 2005;25:374-379
Peritonitis in diabetic PD patients

Cave diabetic retinopathy and polyneuropathy: importance of the connectology and training
IP versus SC Insulin?

Figure 3. Diurnal blood glucose profile in continuous ambulatory peritoneal dialysis (CAPD) patients receiving either (A) intraperitoneally (ip) or (B) subcutaneously (sc) administered insulin.

Insulin therapy in ESRD

Quellhorst et al, JASN 2002
Daily insulin requirements for diabetic patients on peritoneal dialysis

Intraperitoneal vs Subcutaneous insulin (Torun et al, PDI 2005)

CAVEAT: subcapsular hepatic steatosis
Hepatic subcapsular (upper) and intrahepatic steatosis (lower) after ip insulin

sc n=8, 0/8
ip n=8, 7/8
Glucose absorption from the abdominal cavity with different glucose dialysates according to insulin administration

Daily absorption of glucose: 100-300g glucose (up to 80%) = 14-34% daily energy intake (Holmes, PDI 2000)

Do glucose free solutions lead to better glycemia control?

Switch to amino acid 1*

Yang et al, NDT 2005
Do glucose free solutions lead to better glycemia control?

Switch to icodextrin

Oreopoulos et al, PDI, 2004
Do glucose free solutions lead to better glycemia control?

Ico+AA+2Ph vs 4*conventional glucose
30 week study period, N=63

Ter Wee et al, PDI, 2005, S3, S64
Is excellent glycemic control efficacious in the prevention of later complications?
Very efficacious!!
Poor pre-ESRD glycemic control leads to poor outcome after dialysis

Wu M, NDT 1997;12:2105-2110
Diabetes and peritoneal dialysis: What about RRF?

Johnson, PDI 2003;23:276-83
Interventions that delay progression of CRF: ACE Inhibitors

• A meta-analysis\(^1\) of 10 randomized trials found:
 – Slower decline in RRF as opposed to other antihypertensives or placebo.
 – ACE inhibitors were associated with a statistically significant reduction in risk of ESRD, but not of death.

• In ESRD patients: role of ACE-I less clear:
 – Moist\(^2\) et al: ACE-I protect
 – Shingal\(^3\) et al: Trend, but not significant

\(^2\) Moist et al, JASN 2000, 11, 556-564
\(^3\) Shingal et al, PDI, 20, 429-438
ARB’s and PD and RRF

Urine in ml/24 hr

Suzuki et al, AJKD, 43,1056
ARB’s and PD and RRF

Peritoneal Ccrea (l/week)

Suzuki et al, AJKD, 43,1056
Conclusion

• No doubt that diabetes is an evil disease, with negative impact on outcome of ESRD patients

• PD in an integrated care approach is a suitable alternative for diabetics IF

 – Attention to salt and fluid restriction and preservation of RRF
 – Attention to glucose regulation
 – Attention to obesity
 – Use of ACE-I or ARAB
 – Low –GDP mandatory!
 – Icodextrin: only if all other measures fail
Lesson of the week

Spurious hyperglycaemia and icodextrin in peritoneal dialysis fluid

Stephen G Riley, James Chess, Kieron L Donovan, John D Williams

Diabetes mellitus, in particular type 2, has become more common, and the trend is likely to continue. Associated comorbidity is also more common—for example, diabetes is now the most common cause of dialysis dependent renal failure in the Western world. In the United Kingdom between 1991 and 1998, the incidence of new patients on dialysis increased from 67 to more than 90 patients per million population, and the prevalence of diabetes in people receiving dialysis has increased from 10% to 19%.9

The increasing demand for dialysis and slower growth in capacity for haemodialysis has reinforced the need for an integrated approach to providing dialysis. Peritoneal dialysis is the preferred option for a proportion of patients with end stage renal failure.4 A subgroup of patients has difficulties with removing fluid. This can be improved with an alternative osmotic agent based on a polymer of glucose—icodextrin.5 We report a severe potentially clinical consequence of using icodextrin in a diabetic patient, which although mentioned in a specialist journal is still not widely recognised. This issue is even more important given the increasing number of diabetic patients with end stage renal failure. About 500 patients in the United Kingdom use icodextrin daily.

In the emergency department the man seemed comfortable at rest but was feverish with a temperature of 37.2°C. His pulse was 85 beats/min and blood pressure 160/80 mm Hg. Oxygen saturation was 94% on air. He had a raised jugular venous pressure and heard crackles at the base of both lungs. A chest x ray showed interstitial shadowing but no focal consolidation. The finger stick glucose reading was 17 mmol/l.

The team diagnosed him as having chest infection and transferred him to a sister hospital. During transfer the patient’s consciousness decreased; he became sweaty and developed slurred speech. On arrival at the new hospital, the patient had a grand mal seizure. Finger stick glucose testing gave a reading of 13.4 mmol/l. He was given 5 mg diazepam and the fit subsided. Soon after, laboratory blood tests found that venous glucose concentration was only 1.2 mmol/l. On treatment with intravenous glucose the patient recovered.

The admitting doctors started antibiotics and insulin using a sliding scale. Two hours later, the patient had another grand mal seizure and they gave further bolus of diazepam. The glucose finger stick reading had increased again, to 14 mmol/l, but venous glucose concentration was 1.5 mmol/l. They gave further intravenous glucose and the patient recovered. A sample of blood on test sticks from two different machines gave...